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Abstract

Bifurcation phenomena and existence of dual solutions in natural convection in a horizontal annulus are
numerically investigated for the ¯uids of 0.3EPrE1. When the Rayleigh number exceeds a critical value, two kinds

of ¯ow patterns are realized: the ®rst is the crescent-shaped eddy pattern in which the ¯uid in the top of the annulus
ascends, and the second is the ¯ow in which the ¯uid descends by forming two counter-rotating eddies in a half
annulus. For the ¯uids of 0.3EPrE0.5, the second ¯ow pattern can be obtained by the impulsive heating of the
inner cylinder, but it is not obtained from the zero initial condition for 0.6EPrE1. The bifurcation points are

determined, as a function of the Prandtl number. Hysteresis phenomenon occurs for the ¯uids of 0.3EPrE0.4, but
it is not observed for 0.5EPrE1. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection in a horizontal annulus kept at

constant surface temperature has been the subject of

interest of many researchers due to its theoretical inter-

est and its various engineering applications such as

thermal energy storage systems, cooling of electronic

components and transmission cables. The basic ¯ow

®eld for low value of Ra forms two symmetric cres-

cent-shaped eddies in which ¯uid rises near the inner

hotter cylinder and sinks near the outer colder one. At

high Ra, however, several kinds of convective ¯ows

which are dependent on Pr and aspect ratio can be

developed. Powe et al. [1,2] and Rao et al. [3] investi-

gated ¯ow patterns of air (Pr 1 0.7), and found three

¯ow regimes depending on diameter ratio (Di/L ): a

two-dimensional oscillatory ¯ow for Di/L < 2.8, a

three-dimensional spiral ¯ow for 2.8<Di/L<8.5, and

a two-dimensional multicellular ¯ow for Di/L>8.5. On

the other hand, Cheddadi et al. [4] and Yoo [5] investi-

gated the existence of dual steady states for a ¯uid of

Pr=0.7 by introducing arti®cial numerical disturb-

ances.

To date, much work has been done for the various

kinds of natural convection problem in a horizontal

annulus: low Prandtl-number ¯uids [6±9], transient

convection [10], the condition of a constant heat ¯ux

at the boundaries [11], and a conjugate problem [12].

However, relatively few studies have been made for the

e�ect of Prandtl number [13±15] and the existence of

multiple solutions [4,5]. In particular, systematic inves-

tigations on the Prandtl-number dependent ¯ow pat-

tern and bifurcation phenomenon have not been made,

except those by Yoo [14,15]. Most of the past research

has focused the main attention on the heat transfer at

the surface of cylinders [13]. Recently, the present

author [14,15] considered the natural convection
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problem in a narrow horizontal annulus, and investi-
gated the e�ect of the Prandtl number on the stability

of conduction regime and transition of ¯ow patterns.
It was observed that the stability of the conduction
regime of natural convection in a narrow annulus can

be classi®ed into two regimes as a function of the
Prandtl number: (i) at PrE0.2, the instability sets in as
steady or oscillatory ¯ows consisting of multiple like-

rotating cells in the vertical section of the annulus: (ii)
at Pre0.3, the instability ®rst sets in at the top part of
the annulus. After the onset of the instability, very
complex multicellular ¯ow patterns, bifurcation

phenomena, and diverse multiple solutions were
observed, which were dependent on Pr.
A horizontal annulus with a heated inner cylinder is

an interesting physical system, since hydrodynamic
instability can occur in the vertical section [16] at low
Pr, and Rayleigh±BeÂ nard thermal instability [17] can

occur on the top part of the thermally unstable region

at high Pr. For the narrow-gap annulus [14,15], it was
shown that the Prandtl number plays an important

role in the natural convection phenomena, and various
transition phenomena depending on Pr were observed.

Nomenclature

Di diameter of inner cylinder
g acceleration of gravity
J Jacobian

L gap width of the annulus, RoÿRi

Nucond Nusselt number of pure conduction state
Nui, Nuo local Nusselt numbers at the inner and outer cylinders, respectively

Nui, Nuo mean Nusselt numbers at the inner and outer cylinders, respectively
Nu overall Nusselt number, (Nui+Nuo)/2
Pr Prandtl number, n/k
Ra Rayleigh number, ag(TiÿTo)L

3/kn
Ri, Ro radii of the inner and outer cylinders, respectively
r dimensionless radial coordinate
ri, ro dimensionless radii of the inner and outer cylinders, respectively

rc radial coordinate of the center of annular gap, (ri+ro)/2
t dimensionless time
Ti, To temperatures at the inner and outer cylinders, respectively

u, v dimensionless velocity components in the radial and angular directions, respectively.

Greek symbols
a coe�cient of thermal expansion
Z stretched coordinate in the radial direction

y dimensionless temperature
k thermal di�usivity
n kinematic viscosity

r0 mean density
f angular coordinate
C dimensionless streamfunction

o dimensionless vorticity.

Subscripts
cL lower critical value for bifurcation
cU upper critical value for bifurcation.

Fig. 1. Problem con®guration and a plot of streamlines and

isotherms of conduction-dominated regime.
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In this study, we investigate the ¯ow patterns and
the bifurcation phenomena for the ¯uids of 0.3EPrE1,
in a wide-gap annulus of Di/L=2. It is found that

when Ra exceeds a critical value, two kinds of ¯ow
patterns are realized according to initial conditions,
and two kinds of bifurcation phenomena are observed,

which are dependent on the Prandtl number.

2. Analysis

The geometry of the problem and the coordinate

system are shown in Fig. 1. The ¯uid is contained
between two in®nite horizontal concentric circular
cylinders, which are held at di�erent uniform tempera-

tures of Ti and To. The two-dimensional dimensionless

Fig. 2. Transient development of ¯ow patterns for Pr=0.3 and Ra=104: at (a) t=0.08; (b) t=0.115; (c) t=0.148; (d) t=0.15;

(e) t=0.24; (f) steady state. The initial conditions are ~u=y=0, and the inner cylinder is suddenly heated to y=1. The cross in the

streamfunction ®eld indicates the point of Cmax.
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governing equations under Boussinesq approximation
can be written as follows [14]:

@o
@ t
� J�C,o � � Prr2o ÿ PrRa

�
sin�f�@y

@ r

� cos�f� @y
r@f

�
�1�

o � ÿr2C �2�

@y
@ t
� J�C,y� � r2y: �3�

And the boundary conditions on the two walls are

C � @C
@r
� 0, o � ÿ@

2C
@ r2

, y � 1 at r � ri �4�

C � @C
@r
� 0, o � ÿ@

2C
@ r2

, y � 0 at r � ro: �5�

In the azimuthal direction, we impose the following

symmetric conditions about the vertical plane through
the center of cylinders

C � o � @ 2C

@f2
� @y
@f
� 0 at f � 0,p: �6�

The dimensionless heat transfer rate of pure conduc-

tion in the absence of ¯uid motion is

Nucond � 1

ln�ro=ri� : �7�

And the local Nusselt number is de®ned as the actual
heat ¯ux divided by Nucond.

Nui�f� � ÿ
�
r
@y
@r

�
=Nucond at r � ri �8�

Nuo�f� � ÿ
�
r
@y
@ r

�
=Nucond at r � ro: �9�

Eqs. (1)±(5) are solved by the same ®nite di�erence

method described in [14]. We use the (r�f ) meshes of
(45 � 65) or (65 � 65). The time step Dt was taken in
the range of 10ÿ5EDtE10ÿ3.

3. Results and discussion

Computations were performed for the ¯uids with 0.3
EPrE1, and an annulus of Di/L=2 was mainly con-

sidered. In the results presented below, the relative gap
width is Di/L=2, unless otherwise mentioned.
The ¯uid ¯ow for low values of Ra forms a crescent-

shaped eddy in which ¯uid rises near the inner hotter
cylinder and sinks near the outer colder one (Fig. 1).

In the ¯ow of Fig. 1, the ¯uid in the top of the annu-
lus (f=0) ascends, and we will name it `upward ¯ow'.
At high Ra, however, a ¯ow pattern in which the ¯uid

in the top of the annulus (f=0) descends by forming
two counter-rotating eddies in a half annulus exists

(Fig. 2(f)), and we name it `downward ¯ow'.
At ®rst, the results for Pr=0.3 will be presented.

The transient development of downward ¯ow after

impulsive heating of the cylinder is shown in Fig. 2
with Ra=104. The initial conditions are ~u=y=0, and
the inner cylinder is suddenly heated to y=1. After 1 s,

a ¯ow pattern with a crescent-shaped cell is estab-
lished, and maintained for a while. At the initial stage,

the ¯uid near the inner cylinder ascends along the cir-
cumference of the cylinder, and the boundary layer at
the inner cylinder separates from the wall at the top

(f=0) of the inner cylinder (Fig. 2(a)). The magnitude
of the ¯uid velocity in the top of the annulus where a

buoyant plume is created, is increased with time. As
time goes on further, however, the zone of strong con-
vective ¯ow moves downward, and the ¯uid ¯ow in

the top of the annulus becomes weak, and conse-
quently a nearly stagnant zone is formed in that
region. As a result, the boundary layer at the inner

cylinder is separated from the wall at a point fS($0)
near f=0, and a small counter-rotating eddy attached

to the inner cylinder is created in the top of the annu-
lus. At the onset of the instability of the crescent-
shaped upward ¯ow, the created eddy is very small,

and is not clearly visible. We can see the creation of
the eddy from the value of Cmin, since Cmin is zero for
upward ¯ow, and has negative value at the onset of

the instability. After the onset of the instability, the
separation point is shifted downward, and the size of

the eddy becomes large. Fig. 2(b) shows that a strong
¯uid ¯ow occurs in the region of 208<f<508, but
the ¯uid in the top of the annulus (0<f<208) is

almost stagnant. The strong ¯uid ¯ow in the region of
208<f<508 separates the boundary layer on the

inner cylinder from the wall near f=308, and a small
counter-rotating eddy is formed in the top of the inner
cylinder. The small eddy grows in size with time and

extends to the outer cylinder (Fig. 2(c, d)). The magni-
tude of the strength of the newly created eddy also
increases, and ®nally, a new ¯ow pattern with a coun-

ter-rotating eddy on the top of the annulus is estab-
lished (Fig. 2(e,f)).
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Fig. 2 shows the separation of the boundary layer
on the inner cylinder at a point other than the top of
the cylinder (f=0), which creates an eddy in the ther-

mally unstable top region. Once a small eddy has been
created, the eddy grows in size and strength, and
®nally a downward ¯ow consisting of two counter-
rotating eddies develops, if the unstable thermal strati-

®cation in the top region is su�ciently strong.
When we start the computation from the zero initial

condition, the downward ¯ow is usually obtained for

the ¯uid with Pr=0.3, at high Ra. It is observed, how-
ever, that if we use the upward ¯ow as an initial con-
dition, the same type of ¯ow pattern is also obtained,

at some Rayleigh numbers.
To investigate the above phenomena systematically,

Ra was increased starting from Ra=1000, and the sol-
ution was found by letting the initial condition be the

previously obtained (up-scan). And starting from the
solution of high Ra with downward ¯ow as an initial
condition, the Ra was then sequentially decreased

(down-scan). The bifurcation diagram obtained is pre-
sented in Fig. 3. The ®gure shows transitions from
downward to upward ¯ow at RacL 1 3250 and from

upward to downward ¯ow at RacU 1 6.45 � 104. We
can see a hysteresis phenomenon, and that both up-
ward and downward ¯ows exist at RacL<Ra<RacU.

The solutions have been found with the (r � f ) mesh
of (45 � 65). We have investigated the e�ect of
grid system. When using 33 and 65 grid points in
the f-direction with r-grid points=25, 35, or 45, the

lower critical value of RacL was in the range of
3400<RacL<3500 and 3200<RacL<3300, respect-
ively; and the ®ner (r� f ) mesh of (35� 129), yielded

RacL in the range of 3200<RacL<3300.

Examples of dual solutions at Ra=3300, 3 � 104,
and 6.4 � 104 are presented in Fig. 4. The downward
¯ow consists of a small counter-rotating eddy in the

top of the annulus sitting above a large one. In the
downward ¯ow, the points of Cmax and Cmin indicate
the locations of the center of the two cells, and the
magnitude of Cmax and Cmin represents the relative

magnitude of the strength of the cells. For small Ra
near the lower critical Rayleigh number (RacL), ÿCmin

which may be considered as a measure of the strength

of the counter-rotating eddy is much smaller than
Cmax. However, the di�erence becomes small as Ra
increases, and at Rae5.2� 104, ÿCmin is greater than

Cmax (Fig. 5(a)). For downward ¯ow, the point of
Cmax which would be the center of the rotation of the
large eddy, moves downward as Ra increases, but for
upward ¯ow, the point moves upward (Fig. 4).

In the downward ¯ow, the angles (fS's) which rep-
resent the locations of the separation points between
the cells on the inner and outer cylinders are plotted in

Fig. 5(b) as functions of Ra. The de®nition of fS is
presented in Fig. 4(b). The approximate size of the
counter-rotating cell on the top can be measured from

the values of fS. The angle fS does not always
increase with Ra. Instead, fS's at the inner and outer
cylinders have maximum values at Ra 1 7000 and

4 � 104, respectively. This fact shows a competition
between the cells: at the inner cylinder, the upward-
driving buoyancy force in the lower cell tends to shift
the separation point upward, but the downward-driv-

ing force in the upper cell inhibits. Near the lower
critical Rayleigh number, the values of fSs decrease
rapidly as the Rayleigh number decreases, i.e., the

counter-rotating cell on the top becomes more and

Fig. 3. Bifurcation diagram showing the solution branches found for Pr=0.3 in an annulus of Di/L=2. The letters `U' and `D'

denote the `upward' and `downward' ¯ows, respectively.
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more slim, and ®nally it vanishes at RacL and the

upward ¯ow is established; a transition from down-
ward to upward ¯ow occurs.
The temperature distribution of downward ¯ow dif-

fers signi®cantly from that of upward ¯ow, especially
in the upper part of the annulus. In Fig. 6, the distri-
butions of local Nusselt numbers at the inner and

outer cylinders are presented for Ra=4000 and
5� 104, and the overall Nusselt numbers are shown in
Fig. 7 as functions of the Rayleigh number. Apparently,
the distributions of local Nusselt numbers for down-

ward ¯ows are di�erent from those of upward ¯ows,

except at the bottom region (Fig. 6). Fig. 7 shows that
Nu of downward ¯ow, Nu(D), is always greater than
that of upward ¯ow, Nu(U). When Pr=0.3, the rela-

tive di�erence of F=[Nu(D)ÿNu(U)]/Nu(U) is in the
range of 0.12EFE0.17 at Rae104.
In the above, dual solutions for a wide-gap annulus

of Di/L=2 were presented, and the solutions have
been found even for the wider gap annulus of Di/
L=0.5 and 1. One example is presented in Fig. 8 for
Di/L=0.5. For Pr=0.3, the lower critical Rayleigh

Fig. 4. Streamlines and isotherms of dual solutions for Pr=0.3: (a) Ra=3300; (b) Ra=3 � 104; (c) Ra=6.4 � 104. The left are

upward ¯ows and the right are downward ¯ows.
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numbers above which dual solutions exist are in the
range of 7700<RacL<7800, 4200<RacL<4300,

and 3200<RacL<3300, for Di/L=0.5, 1, and 2, re-
spectively, i.e., RacL increases as the gap of the annulus
becomes wide.

The bifurcation diagram and characteristics of heat
transfer for the ¯uid with Pr=0.4 are similar to those
of Pr=0.3 shown in Figs. 3 and 7. When Pr=0.4, the

transitions from downward to upward and from
upward to downward ¯ow occur at 3050<RacL<3100
and 9�104<RacU<9.5�104, respectively. The upper
critical Rayleigh number (RacU) is larger than that of

Pr=0.3.
For the ¯uid with Pr=0.5, both the upward and

downward ¯ows are found at Rae3000. One example

is presented in Fig. 9 with Ra=3� 104, and the overall
Nusselt numbers as functions of Ra are in Fig. 10. The
¯ow ®eld of Pr=0.5 in Fig. 9 and that of Pr=0.3 in

Fig. 4(b) show that the point of Cmax is shifted upward

with increase of Pr. Unlike the case of Pr=0.3 and
0.4, the transition from the solution branch of upward

¯ow to that of downward ¯ow does not occur, when
Pr=0.5. Computations were carried out up to Ra=2
� 105, but the transition has not been observed. Only

the transition from downward to upward ¯ow occurs
with decrease of Ra. The overall Nusselt number of
downward ¯ow is greater than that of upward ¯ow

(Fig. 10), and the relative di�erence of
F=[Nu(D)ÿNu(U)]/Nu(U) for Pr=0.5 is in the range
of 0.09EFE0.12 at Rae104, which is smaller than

that of Pr=0.3.
When 0.3 E Pr E 0.5, the downward ¯ow can be

obtained from the zero initial condition of ~u=y=0, at
high Ra, that is, the transient development of ¯ows

after impulsive heating of the inner cylinder yields
downward ¯ow naturally for the ¯uids of 0.3EPrE0.5.
At Pre0.6, however, the downward ¯ow has not been

obtained from the zero initial condition. Contrary to
the case of 0.3EPrE0.5, the ascending ¯uid ¯ow in
the top part of the annulus is strong, and a stagnant

zone is not formed in that region. Consequently, the
boundary layer at the inner cylinder is not separated at
a point other than f=0, and the crescent-shaped

upward ¯ow is maintained. However, if we use the
downward ¯ow of 0.3EPrE0.5 as an initial condition,
the same type of solution is also obtained for Pre0.6,
at above a certain critical Rayleigh number.

The two types of ¯ows obtained for Pr=0.7 with
Ra=104 and 8� 104 are presented in Fig. 11, in which
the left represent the crescent-shaped upward ¯ows

which are commonly observed in the numerous pre-
vious studies [18]. When Pr=0.7, the point of Cmax

moves upward as Ra increases, for both the downward

and upward ¯ows. The downward ¯ow exists at
Rae2900. At RaE2800, only upward ¯ow is obtained
regardless of the initial conditions. The bifurcation
phenomenon for Pr=0.7 is similar to that of Pr=0.5

in Fig. 10: the transition from downward to upward
¯ow occurs with the decrease of Ra, but the transition
from upward to downward ¯ow does not occur. As Ra

is increased, the intensity of the buoyant plume di-
rected upward at the top of the annulus (f=0)
becomes more and more strong (Fig. 11), and conse-

quently the transition from upward and downward
¯ow does not occur. The overall Nusselt number of
downward ¯ow is greater than that of upward ¯ow, as

the case of Pr=0.3 and 0.5. The relative di�erence of
F=[Nu(D)ÿNu(U)]/Nu(U) for Pr=0.7 is in the range
of 0.08EFE0.1 at Rae104; and from the results of
Nu for Pr=0.3, 0.5, and 0.7, we can see that the di�er-

ence of Nu between downward and upward ¯ows
decreases as Pr increases.
As mentioned above, a transition from upward to

downward ¯ow occurs for Pr=0.3, but does not for
Pr=0.7. To see the characteristics of the upward ¯ows

Fig. 5. (a) Maximum and minimum values of streamfunction

as functions of Rayleigh number for Pr=0.3: the letters `U'

and `D' denote the `upward' and `downward' ¯ows, respect-

ively. (b) Angles (fS) representing the locations of the separ-

ation points between two cells on the inner and outer

cylinders for Pr=0.3, in the downward ¯ow: the de®nition of

fS is in Fig. 4(b).
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Fig. 6. Distribution of local Nusselt numbers at the inner and outer cylinders for Pr=0.3 with Ra=4000 and 5� 104. The letters

`U' and `D' denote the `upward' and `downward' ¯ows, respectively.

Fig. 7. Overall Nusselt number (Nu) for Pr=0.3. The letters `U' and `D' denote the `upward' and `downward' ¯ows, respectively.
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Fig. 8. Streamlines and isotherms of dual solutions in an annulus of Di/L=0.5 with Pr=0.3 and Ra=2� 104.

Fig. 9. Streamlines and isotherms of dual solutions for Pr=0.5 with Ra=3� 104.

Fig. 10. Overall Nusselt number (Nu) for Pr=0.5. The letters `U' and `D' denote the `upward' and `downward' ¯ows, respectively.

J.-S. Yoo / Int. J. Heat Mass Transfer 42 (1999) 3279±3290 3287



which yield di�erent transition phenomena for Pr=0.3
and 0.7, the distributions of the radial velocity at the
centerline of the annular gap, u(rc, f ), are presented in

Fig. 12 as functions of the Rayleigh number. In the
lower part of the annulus (908<f<1808), the vel-
ocity pro®le of Pr=0.3 is similar to that of Pr=0.7.

However, signi®cant di�erent characteristics can be
seen in the upper part of the annulus (0<f<908).
When Pr=0.3 (Fig. 12(a)), u(rc, f ) has maximum

values at the points other than the uppermost point of
the annulus (f=0): the points for Ra=3000, 104,
2� 104, 4� 104, and 6� 104 are f1 65, 57, 50, 34 and

258, respectively. The velocity at f=0, u(rc, 0), does
not always increase with Ra. For Ra=2� 104, 4� 104,
and 6 � 104, u(rc, 0) is decreased, as Ra increases. It
can also be seen that the ¯uid near the region of f=0

is nearly stagnant at Ra=6� 104. On the other hand,
the point of maximum velocity is shifted upward and
the magnitude of the maximum velocity increases

monotonously, as Ra increases. The upward ¯ow pat-
tern is maintained up to Ra=6 � 104. At a critical
value of Ra=6.5� 104, however, the strong ¯uid ¯ow

near the point of the maximum velocity
(158<f<358) separates the boundary layer on the
inner cylinder at fS($0), since the ¯uid in the top of

the annulus (0<f<fS) is nearly stagnant. As a result
a counter-rotating eddy is created on the top of the
annulus, and afterwards the ¯uid ¯ow in the top of the

annulus becomes strong, due to the unstable thermal
strati®cation in the upper part of the annulus. And the
strength of the counter-rotating eddy increases; a tran-

sition from upward to downward ¯ow occurs.
When Pr=0.7, Fig. 12(b) shows that u(rc, f ) has

maximum values at the uppermost point of the annu-

lus (f=0) for all Rayleigh numbers, i.e., the most
strong ¯uid ¯ow directed upward occurs in the top of
the annulus (f=0), and u(rc, 0) increases continuously

with Ra. Accordingly, the boundary layer on the inner
cylinder does not separate from the wall at a point
other than f=0, and the upward ¯ow pattern is main-
tained always; a transition from upward to downward

¯ow does not occur.
Cheddadi et al. [4] and Yoo [5] investigated dual

steady solutions for the ¯uid with Pr=0.7 (air), in

which the downward ¯ow (or bicellular ¯ow) was
obtained by introducing arti®cial numerical disturb-
ances. The upper part of an annulus with a heated

inner cylinder is thermally unstable, and accordingly,
the instability of the crescent-shaped upward ¯ow
which yields downward ¯ow can persist, if the unstable

Fig. 11. Streamlines and isotherms of dual solutions for Pr=0.7: (a) Ra=104; (b) Ra=8� 104.
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strati®cation in the top region is su�ciently strong. In

this study, we have observed that the transient devel-
opment of ¯ows after impulsive heating of the inner

cylinder yields downward ¯ow for the ¯uids of 0.3EPr

E 0.5. The natural occurrence of downward ¯ow for

0.3EPrE0.5 may be caused by the combined e�ect of
hydrodynamic and thermal instability; and the down-

ward ¯ow for Pr=0.7 was obtained with the solution

of 0.3EPrE0.5. When Pr=0.7, the critical Rayleigh
number above which dual solutions exist is in the

range of 2880 < Rac < 2890, which is larger than

Rac=1708 in the Rayleigh±BeÂ nard problem [17]. The
characteristics of the dual solutions and the bifurcation

phenomenon for Pr=0.7 are in accordance with those

of Cheddadi et al. [4] and Yoo [5].

Finally, the map of ¯ow regime on the Pr±Ra plane

is presented in Fig. 13. The critical Rayleigh number
above which both the upward and downward ¯ows

exist is decreased, as Pr increases. This is due to the

stabilizing e�ect of viscous force and temperature ®eld
in the thermally unstable upper region. Once the ther-

mal plume on the upper part of the annulus has been

established, the viscous drag tends to maintain the

shape of the thermal plume, and the force is increased
with increase of Pr.

4. Conclusions

The ¯ow patterns and the bifurcation phenomena in

natural convection in a horizontal annulus are numeri-
cally investigated for the ¯uids of 0.3EPrE1. When Ra
exceeds a critical value, two kinds of ¯ow patterns

named `downward ¯ow' and `upward ¯ow' which are
characterized by the direction of the ¯uid ¯ow in the
top of the annulus, are realized. For the ¯uids of
0.3EPrE0.5, the transient development of ¯ows after

impulsive heating of the inner cylinder yields down-
ward ¯ow. At 0.6EPrE 1, however, the downward
¯ow has not been obtained from the zero initial con-

dition. At the onset of the instability of upward ¯ow, a
nearly stagnant zone is formed in the top part of the
annulus, and the boundary layer on the inner cylinder

separates from the wall at a point other than the top
of the cylinder. At 0.3EPrE 0.4, both of the tran-
sitions from downward to upward and from upward
to downward ¯ow occur. When 0.5EPrE1, however,

only the transition from downward to upward ¯ow
occurs with decrease of Ra. The characteristics of
upward ¯ow which determine the transition phenom-

enon are elucidated by the distributions of radial vel-
ocity at the centerline of the annular gap. As Pr
increases, the critical Rayleigh number above which

both of the upward and downward ¯ows exist is
decreased. The temperature distribution of downward
¯ow di�ers signi®cantly from that of upward ¯ow,

Fig. 12. Distribution of the radial velocity of upward ¯ow at

the centerline of the annular gap, as a function of Ra:

(a) Pr=0.3; (b) Pr=0.7.

Fig. 13. Map of downward and upward ¯ows on the Pr±Ra

plane, for an annulus of Di/L=2.
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except at the lower part of the annulus. The overall
Nusselt number of downward ¯ow is greater than that

of upward ¯ow, and the di�erence decreases, as Pr
increases.
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